Advanced Probiotic Suggestions

In a clinical setting, a practitioner may conceptually believe that a patient would benefit from a probiotic. The problem is which one(s). Often the advice is a generic “take a good probiotic”; a suggestion bordering on magical thinking.
Video version below.

Level 1: Using Published Studies

In general, published studies use specific strains of probiotics. Those strains may not be readily available. Often, the suggestion would be to take the same species (with fingers crossed).

For those that wish to avoid this wishful thinking, we have a page listing Research Probiotics available Retail. This allows you to do a quick search. For example, for ADHD we have just two strains listed as shown below. For some conditions, nothing will be found. These are links to studies or reviews that need to be reviewed by the practitioner.

The basic issue is a lack of studies. Comparison studies are usually non-existant.

Level 2: Identifying cause of condition(s) and targeting taxa

Often this is done by using microbiome analysis looking for abnormal levels of bacteria and seeing what will alter them. For example, multiple studies report low levels of Faecalibacterium and high levels of Bifidobacterium for ADHD. As above, we have a search page that links to studies of the impact of different probiotics (and supplements) on each bacteria.

Level 3: Identifying cause using Enzymes and Metabolites

At this point we enter into the Citizen Science world at Microbiome Prescription. Thousands of people have uploaded their microbiome samples from a host of different providers and then annotated the samples with their symptoms and conditions. The data is at MicrobiomePrescription Citizen Science.

The chart below shows the process. The number of abnormal bacteria (too high or too low) is much larger than published studies — not unexpected given the much larger sample size.

Abstraction

We take the microbiome data and transformed it with data from KEGG: Kyoto Encyclopedia of Genes and Genomes to get estimates of enzymes and metabolites or compounds. This data is processed thru a variety of methods to determine associations of the enzymes and metabolites to condition.

What we observe is that at the metabolite level we often have agreement across the three most common providers

At the enzyme level, we do not get this strong pattern

Nor do we get it by the bacteria associated.

Apparent Conclusion

The cause of the symptom or diagnosis appears to be an imbalance of the metabolites. Metabolites levels are the results of multiple bacteria and not a specific bacteria.

Monte Carlo Selection of Probiotics

As a proof of concept, I applied algorithms to the above with the following being the top items suggested (in descending priority). Play with it on Symptom Association Studies.

  • Taxa Based — Select probiotics based on abnormal bacteria shifts
  • Enzyme Based — Select probiotics based on enzymes that are deficient in the condition, but know to be produced by the probiotic
  • Metabolite Based — Select probiotics based on metabolites that are deficient in the condition, which the probiotic impacts
Taxa BasedEnzyme BasedMetabolite Based
clostridium butyricum ,Miya,Miyarisan
Lentilactobacillus kefiri {Kefibios}
bifidobacterium lactis,streptococcus thermophilus probiotic
pediococcus acidilactic {RBB9 PEDIOCOCCUS ACIDILACTI}
Bifidobacterium animalis
Lacticaseibacillus paracasei shirota {Yakult}
bifidobacterium infantis {B. infantis}
lactobacillus helveticus {L. helveticus}
Bifidobacterium animalis subsp. lactis {B. Lactis}
lactobacillus reuteri
bifidobacterium longum,lactobacillus helveticus
Levilactobacillus brevis {L.brevis}
Bacillus pumilus {B. pumilus}
lactobacillus salivarius
Lactobacillus Johnsonii {Lactobacillus Johnsonii}
lactobacillus paracasei,lactobacillus acidophilus,bifidobacterium animalis
lactobacillus paracasei
Streptococcus faecalis, Clostridium butyricum, Bacillus mesentericus {Bio-three}
Lentilactobacillus buchneri {Lactobacillus buchneri}
Lactobacillus kefiranofaciens {Kefir Probiotic}
bifidobacterium pseudocatenulatum li09,bifidobacterium catenulatum li10
mutaflor escherichia coli nissle 1917
enterococcus faecium (probiotic)
Pediococcus pentosaceus
lactobacillus helveticus,lactobacillus rhamnosus
Bifidobacterium longum subsp. longum BB536 {BB536}
lactobacillus plantarum,xylooligosaccharides,
lactobacillus crispatus {L. Crispatus}
Enterococcus faecium sf 68 {bioflorin}
aspergillus oryzae {koji}
lactobacillus casei
Bifidobacterium breve {B. breve}
Latilactobacillus sakei {Lactobacillus sakei}
Arthrospira platensis {Spirulina}
Brevibacillus laterosporus {B. laterosporus }
Lactobacillus jensenii {L Jensenii}
Escherichia coli cryodesiccata {colinfant probiotics}
Finnish Probiotic {Valio Probiotic}
Alkalihalobacillus clausii {Bacillus clausii }
bifidobacterium bifidum
bacillus subtilis,lactobacillus acidophilus
Limosilactobacillus fermentum (probiotic)
Bifidobacterium catenulatum subsp. catenulatum {Bifidobacterium catenulatum}
Escherichia coli:DSM 16441-16448 {symbioflor-2}
lactobacillus plantarum
bacillus subtilis natto {B.natto}
Lactiplantibacillus pentosus {L. pentosus}
Bacillus amyloliquefaciens group {B. Amyloliquefaciens}
Lactococcus lactis {Streptococcus lactis}
Lactobacillus gasseri {L.gasseri}
Pseudomonas fluorescens
Pseudomonas putida
Escherichia coli
Azospirillum lipoferum
Azospirillum brasilense
Cereibacter sphaeroides
Rhodospirillum rubrum
Streptomyces venezuelae
Azotobacter vinelandii
Rhodococcus rhodochrous
Azotobacter chroococcum
Pimelobacter simplex
Acinetobacter calcoaceticus
Priestia megaterium
Streptomyces fradiae
Brevibacillus brevis
Bacillus thuringiensis
Peribacillus simplex
Paenibacillus polymyxa
Bacillus subtilis
Arthrobacter citreus
Brevibacillus laterosporus
Arthrobacter agilis
Bacillus amyloliquefaciens
Alkalihalophilus pseudofirmus
Bacillus velezensis
Bacillus subtilis subsp. natto
Heyndrickxia oleronia
Bacillus pumilus
Shouchella clausii
Cellulosimicrobium cellulans
Bacillus licheniformis
Cellulomonas fimi
Lentibacillus amyloliquefaciens
Clostridium beijerinckii
Corynebacterium stationis
Heyndrickxia coagulans
Micrococcus luteus
Clostridium butyricum
Lactiplantibacillus plantarum
Bifidobacterium longum subsp. infantis
Bifidobacterium breve
Bifidobacterium pseudocatenulatum
Enterococcus faecalis
Bifidobacterium longum subsp. longum
Enterococcus faecium
Lacticaseibacillus paracasei
Lactococcus cremoris
Bifidobacterium longum
Lactiplantibacillus pentosus
Bifidobacterium breve
Bifidobacterium pseudocatenulatum
Bifidobacterium longum subsp. infantis
Bifidobacterium bifidum
Bifidobacterium longum
Bifidobacterium catenulatum
Bifidobacterium adolescentis
Bifidobacterium longum subsp. longum
Bifidobacterium animalis subsp. lactis
Pediococcus pentosaceus
Pediococcus acidilactici
Lactobacillus acidophilus
Brevibacillus brevis
Escherichia coli
Lactobacillus delbrueckii subsp. bulgaricus
Limosilactobacillus reuteri
Lactobacillus gasseri
Lactobacillus jensenii
Lactobacillus johnsonii
Enterococcus durans
Lactobacillus helveticus
Pseudomonas putida
Streptococcus thermophilus
Limosilactobacillus fermentum
Ligilactobacillus salivarius
Levilactobacillus brevis
Lactobacillus kefiranofaciens
Lactobacillus crispatus
Lentilactobacillus kefiri
Leuconostoc mesenteroides
Arthrobacter agilis
Micrococcus luteus
Lactococcus cremoris
Leuconostoc lactis
Alkalihalophilus pseudofirmus
Lactococcus lactis
Priestia megaterium
Corynebacterium stationis
Acinetobacter calcoaceticus
Anaerobutyricum hallii
Brevibacillus laterosporus
Lactiplantibacillus plantarum
Streptomyces fradiae
Pimelobacter simplex
Cellulomonas fimi
Lactiplantibacillus pentosus
Bacillus licheniformis
Lacticaseibacillus casei
Lacticaseibacillus rhamnosus
Lentibacillus amyloliquefaciens

Some probiotics are high on all three lists, for example: E.Coli. Others are not. I am inclined to using enzymes as the preferred abstraction. Metabolites have a very nice clustering, but at present deriving probiotics is not as clean and simple as desired. A more complex model is needed.

What have we learnt:

  • There may not be studies on probiotics for a specific condition
  • There are studies on probiotics that shifts some taxa. Things can become complex when there are multiple taxa in scope (as well as reliability of taxa identification)
  • From the KEGG Enzymes estimated from a sample, we can derive the enzyme producing probiotics that may conceptually help
    • Note: Organic Acid Test (OATS) report on many of these enzymes and can be used to validate estimates. Additionally, OATS tests can be used to select probiotics for the reported deficiencies
  • From the KEGG metabolites estimated from a sample, we can supplement with the deficiency where practical, or look for probiotics that produces deficient metabolites.

The Enzymes and Metabolite approaches should produce reasonable candidates for future clinical studies.

Patient Specific Suggestions

The above exploration analysis was done ignoring the amount of bacteria in a specific example (and thus enzymes and metabolites). It also ignored whether there is duplication of enzymes and metabolites in the probiotics. Ideally, you want a full coverage of enzymes and metabolites.

https://youtu.be/Z9qXyEVQlus

Leave a Reply