Bacteria Shifts that are Statistically Significant for Mast Cell Issues

We have two self reported symptoms with sufficient samples to explore associations:

  • Comorbid: Histamine or Mast Cell issues
  • Official Diagnosis: Mast Cell Dysfunction

I have done simplified tables below. One item that was very interesting is that some Bifidobacterium was too high and others too low. Of the four low bacteria, only Bifidobacterium breve is available commercially. Low Lactobacillus was not reported anywhere and high Lactobacillales is reported

  • Too High
    • Bifidobacteriaceae
    • Bifidobacteriales
    • Bifidobacterium
    • Bifidobacterium adolescentis
    • Bifidobacterium adolescentis JCM 15918
    • Bifidobacterium angulatum
    • Bifidobacterium gallicum
  • Too Low
    • Bifidobacterium breve
    • Bifidobacterium catenulatum PV20-2
    • Bifidobacterium catenulatum subsp. kashiwanohense
    • Bifidobacterium cuniculi

Everything below is P < 0.005 (or 1 in 200 of happening at random).

Official Diagnosis: Mast Cell Dysfunction

Biomesight

BacteriaRankShift
AnaerofustisgenusToo High
Anaerofustis stercorihominisspeciesToo High
LuteibactergenusToo Low
Luteibacter anthropispeciesToo Low

Ombre

BacteriaRankShift
Actinomycetes incertae sedisno rankToo High
ComamonadaceaefamilyToo High
DeinococciclassToo High
DeinococcotaphylumToo High
DesulfocellagenusToo High
Desulfocella halophilaspeciesToo High
EmticiciagenusToo High
HungateiclostridiaceaefamilyToo High
HungateiclostridiumgenusToo High
LimosilactobacillusgenusToo High
Limosilactobacillus fermentumspeciesToo High
ListeriagenusToo High
ListeriaceaefamilyToo High
MethylococcaceaefamilyToo High
MethylococcalesorderToo High
MicrobactergenusToo High
NeisseriaceaefamilyToo High
NeisserialesorderToo High
Oscillatoriales incertae sedisno rankToo High
ParacoccaceaefamilyToo High
PseudoscillatoriagenusToo High
Pseudoscillatoria coraliispeciesToo High
RickettsiagenusToo High
Slackia heliotrinireducensspeciesToo High
SphingobacteriumgenusToo High
StaphylococcusgenusToo High
unclassified BurkholderialesfamilyToo High
unclassified ClostridialesfamilyToo High
VaribaculumgenusToo High

Comorbid: Histamine or Mast Cell issues

We have a lot more annotated samples on this self-reported symptoms. There is fuzziness between a pure histamine issue and a mast cell issue

Ombre

BacteriaRankShift
Absiella tortuosumspeciesToo High
Actinomycetes incertae sedisno rankToo High
ActinopolysporalesorderToo High
AgaribactergenusToo High
Agaribacter marinusspeciesToo High
AnaeromicropilagenusToo High
Anaeromicropila populetispeciesToo High
BlastocatelliaclassToo High
Cerasicoccus frondisspeciesToo High
Clostridium grantiispeciesToo High
ComamonadaceaefamilyToo High
CryomorphaceaefamilyToo High
DeinococciclassToo High
DeinococcotaphylumToo High
DesulfitobacteriaceaefamilyToo High
DesulfitobacteriumgenusToo High
DesulfobacteriaceaefamilyToo High
DesulfocellagenusToo High
Desulfocella halophilaspeciesToo High
Desulfofarcimen acetoxidansspeciesToo High
DesulfosporosinusgenusToo High
DesulfuromonadaceaefamilyToo High
DesulfuromonadiaclassToo High
EmticiciagenusToo High
FusibactergenusToo High
Gammaproteobacteria incertae sedisno rankToo High
HalopolysporagenusToo High
Halopolyspora albaspeciesToo High
Holdemania massiliensisspeciesToo High
HydrogenibacillusgenusToo High
Hydrogenibacillus schlegeliispeciesToo High
LimosilactobacillusgenusToo High
Limosilactobacillus fermentumspeciesToo High
ListeriagenusToo High
ListeriaceaefamilyToo High
Mesomycoplasma conjunctivaespeciesToo High
MethylococcaceaefamilyToo High
MicrobactergenusToo High
Microbacter margulisiaespeciesToo High
MzabimycetaceaefamilyToo High
NeisseriaceaefamilyToo High
NeisserialesorderToo High
NostocalesorderToo High
Odoribacter laneusspeciesToo High
Oscillatoriales incertae sedisno rankToo High
Oscillibacter valericigenesspeciesToo High
ParacoccaceaefamilyToo High
ParasporobacteriumgenusToo High
PedobactergenusToo High
PlanctomycetalesorderToo High
PlanctomycetiaclassToo High
PlanctomycetotaphylumToo High
PontibacillusgenusToo High
Pontibacillus halophilusspeciesToo High
Porphyromonas someraespeciesToo High
PropioniferaxgenusToo High
Propioniferax innocuaspeciesToo High
Proteinivorax tanatarensespeciesToo High
PseudoramibactergenusToo High
Pseudoramibacter alactolyticusspeciesToo High
PseudorhodobactergenusToo High
PseudoscillatoriagenusToo High
Pseudoscillatoria coraliispeciesToo High
RhodocyclaceaefamilyToo High
RhodocyclalesorderToo High
RickettsiagenusToo High
RickettsiaceaefamilyToo High
RickettsialesorderToo High
RickettsieaetribeToo High
SaccharofermentansgenusToo High
Saccharofermentans acetigenesspeciesToo High
SedimentibactergenusToo High
SphingobacteriumgenusToo High
spotted fever groupspecies groupToo High
Stackebrandtia nassauensisspeciesToo High
StomatobaculumgenusToo High
TexcoconibacillusgenusToo High
Texcoconibacillus texcoconensisspeciesToo High
ThiohalobactergenusToo High
Thiohalobacter thiocyanaticusspeciesToo High
ThiohalobacteraceaefamilyToo High
ThiohalobacteralesorderToo High
ThiohalorhabdaceaefamilyToo High
ThiohalorhabdalesorderToo High
VerrucomicrobiaceaefamilyToo High
WeeksellaceaefamilyToo High

Biomesight

BacteriaRankShift
AcidaminococcusgenusToo Low
Acidaminococcus fermentansspeciesToo Low
ActinomycetesclassToo High
ActinomycetotaphylumToo High
AmedibacillusgenusToo High
Amedibacillus dolichusspeciesToo High
AnaerobrancagenusToo High
Anaerobranca zavarziniispeciesToo High
AnaerolineagenusToo High
Anaerolinea thermolimosaspeciesToo High
AnaerolineaceaefamilyToo High
AnaerolinealesorderToo High
AnaerotruncusgenusToo Low
Anaerotruncus colihominisspeciesToo Low
ArchaeasuperkingdomToo Low
Atopobium fossorspeciesToo Low
AzoarcusgenusToo High
BacteroidaceaefamilyToo Low
BacteroidesgenusToo Low
Bacteroides acidifaciensspeciesToo Low
Bacteroides cellulosilyticusspeciesToo Low
Bacteroides fluxusspeciesToo Low
Bacteroides uniformisspeciesToo Low
BifidobacteriaceaefamilyToo High
BifidobacterialesorderToo High
BifidobacteriumgenusToo High
Bifidobacterium adolescentisspeciesToo High
Bifidobacterium adolescentis JCM 15918strainToo High
Bifidobacterium angulatumspeciesToo High
Bifidobacterium brevespeciesToo Low
Bifidobacterium catenulatum PV20-2strainToo Low
Bifidobacterium catenulatum subsp. kashiwanohensesubspeciesToo Low
Bifidobacterium cuniculispeciesToo Low
Bifidobacterium gallicumspeciesToo High
BilophilagenusToo Low
Bilophila wadsworthiaspeciesToo Low
BlautiagenusToo Low
Caloramator mitchellensisspeciesToo High
Candidatus Tammella caduceiaespeciesToo High
CatenibacteriumgenusToo High
Catenibacterium mitsuokaispeciesToo High
CetobacteriumgenusToo High
ChloroflexotaphylumToo High
CoprococcusgenusToo High
Coprococcus eutactusspeciesToo High
CoraliomargaritagenusToo High
CoraliomargaritagenusToo Low
Coraliomargarita akajimensisspeciesToo High
Coraliomargarita akajimensisspeciesToo Low
CoraliomargaritaceaefamilyToo High
CoraliomargaritaceaefamilyToo Low
DeferribactergenusToo High
Deferribacter autotrophicusspeciesToo High
DeferribacteraceaefamilyToo High
DeferribacteralesorderToo High
DeferribacteresclassToo High
DeferribacterotaphylumToo High
DesulfitobacteriumgenusToo Low
DesulfomonilaceaefamilyToo High
DesulfomonilalesorderToo High
DesulfomoniliaclassToo High
DesulforamulusgenusToo High
Ectothiorhodospira imhoffiispeciesToo High
EntomoplasmataceaefamilyToo Low
EntomoplasmatalesorderToo Low
Eubacterium limosumspeciesToo High
EuryarchaeotaphylumToo Low
FaecalibacteriumgenusToo High
Fusobacterium nucleatumspeciesToo High
HathewayagenusToo Low
Hathewaya histolyticaspeciesToo Low
HelicobactergenusToo High
HelicobactergenusToo Low
HelicobacteraceaefamilyToo High
HelicobacteraceaefamilyToo Low
HoldemanellagenusToo High
Holdemanella biformisspeciesToo High
HoldemaniagenusToo Low
Hoylesella loescheiispeciesToo High
HyphomicrobialesorderToo High
HyphomicrobialesorderToo Low
JohnsonellagenusToo Low
Johnsonella ignavaspeciesToo Low
LachnobacteriumgenusToo High
LactobacillalesorderToo High
LactococcusgenusToo High
LimosilactobacillusgenusToo Low
LuteibactergenusToo High
Luteibacter anthropispeciesToo High
Lysobacter desertispeciesToo High
MesoplasmagenusToo Low
Mesoplasma entomophilumspeciesToo Low
MethanobacteriaclassToo Low
MethanobacteriaceaefamilyToo Low
MethanobacterialesorderToo Low
MethanobrevibactergenusToo Low
Methanobrevibacter smithiispeciesToo Low
Methanomada groupcladeToo Low
Mogibacterium vescumspeciesToo High
MollicutesclassToo High
MycobacteriaceaefamilyToo High
MycobacteriumgenusToo High
MycoplasmatotaphylumToo High
MyxococcalesorderToo High
MyxococciaclassToo High
MyxococcotaphylumToo High
NatranaerobialesorderToo High
PedobactergenusToo Low
Phascolarctobacterium faeciumspeciesToo Low
PhocaeicolagenusToo Low
Phocaeicola massiliensisspeciesToo High
Phocaeicola paurosaccharolyticusspeciesToo Low
PolyangiasubclassToo High
Prevotella dentasinispeciesToo High
PrevotellaceaefamilyToo High
ProsthecobactergenusToo High
ProteinivoraceaefamilyToo High
Ruminococcus callidusspeciesToo High
Schaalia naturaespeciesToo High
SegatellagenusToo High
Segatella coprispeciesToo High
Segatella paludivivensspeciesToo High
Shewanella upeneispeciesToo High
SlackiagenusToo High
Slackia isoflavoniconvertensspeciesToo Low
SphingobiumgenusToo High
Sutterella stercoricanisspeciesToo High
SyntrophalesorderToo High
SyntrophiaclassToo High
SyntrophomonadaceaefamilyToo High
ThermusgenusToo High
Thiothrix ramosaspeciesToo High

Bottom Line

The above data will eventually be incorporated into the expert system suggestions on Microbiome Prescription.

Bacteria Shifts that are Statistically Significant for Long COVID

The process is very simple, for a condition like ME/CFS, we compute the expected number of samples reporting this bacteria (based on people without Long COVID) and compare it to the actual number seen. This can be used to compute a statistical value called Chi-Square (χ²), This is then used to compute the chance of it happening at random. This is possible because we have over 3600 samples from some labs and thus able to detect things better.

Actual example:

  • Tetragenococcus halophilus – Species reported by Biomesight
    • Expected to see 15
    • Actually seen 59
  • In other words almost 4x more common than expected. The probability is
    • 1.68054690853052E-30
    • or 1 chance in 600,000,000,000,000,000,000,000,000,000 of happening at random.
  • This suggests that we should reduce it to remedy Long COVID [with the other 92 bacteria involved]

Biomesight and Ombre identifies bacteria using different methodologies so often give different names and amounts. For background on this lack of standardization, see The taxonomy nightmare before Christmas…

The data below is for samples marked with “Official Diagnosis: COVID19 (Long Hauler)”. Only Biomesight had sufficient data to get patterns.

Long COVID appears similar to ME/CFS, so comparing results below to those in this post: Bacteria Shifts that are Statistically Significant for ME/CFS, may provide further insight.

Unlike some conditions shown below, it is not just one bacteria involved but combinations.

  • Peptic ulcer disease: Helicobacter pylori
  • Tetanus: Clostridium tetani
  • Typhoid fever: Salmonella typhi
  • Diphtheria: Corynebacterium diphtheriae
  • Syphilis: Treponema pallidum
  • Cholera: Vibrio cholerae
  • Leprosy: Mycobacterium leprae
  • Tuberculosis: Mycobacterium tuberculosis
  • Sinusitis: Corynebacterium tuberculostearicum

Biomesight Data

We have more data from Biomesight which means better (more) detection of significant bacteria. The data is very different from ME/CFS. We have 16 bacteria too high and 61 bacteria too low. With ME/CFS and the same lab, we have 12 bacteria that are too low and 116 bacteria that are too high.

We have some commonalities

  • Bifidobacterium adolescentis is too low for both Long COVID and ME/CFS
  • Lactobacillus crispatus is too high
  • Another probiotic genus, Lactococcus, is also too high
Tax_NameTax_RankExpectedObservedShiftProbability
50 kb inversion cladeclade77.354Too Low0.008002
Acinetobacter antiviralisspecies13.724Too High0.00524
Acinetobacter johnsoniispecies18.130Too High0.004944
Actinopolysporagenus62.335Too Low0.001477
Actinopolysporaceaefamily62.335Too Low0.001477
Actinopolysporalesorder62.335Too Low0.001477
Aeromonadaceaefamily81.857Too Low0.006169
Alkalibacteriumgenus112.581Too Low0.005041
Anaerococcus lactolyticusspecies23.238Too High0.002205
Anaerococcus prevotiispecies20.133Too High0.003987
ant, tsetse, mealybug, aphid, etc. endosymbiontsclade82.758Too Low0.006624
Bifidobacterium adolescentis strain103.565Too Low0.002509
Chromatiumgenus61.334Too Low0.00355
Chromatium weisseispecies61.234Too Low0.00355
Chromobacterium groupno rank15.326Too High0.006127
Citrobactergenus64.141Too Low0.003939
Clostridium neonatalespecies13.725Too High0.002196
Cohnellagenus108.678Too Low0.005067
Coraliomargaritagenus96.470Too Low0.00718
Coraliomargarita akajimensisspecies96.370Too Low0.007357
core genistoidsclade77.354Too Low0.008002
Corynebacterium striatumspecies16.928Too High0.006887
Crotalarieaetribe77.354Too Low0.008002
Deferribacteraceaefamily98.271Too Low0.006129
Deferribacteralesorder98.271Too Low0.006129
Deferribacteresclass98.271Too Low0.006129
Deferribacterotaphylum98.271Too Low0.006129
Desulfallaceaefamily148.6108Too Low0.001472
Enterobacter cloacae complexspecies group86.460Too Low0.004516
Enterobacter hormaecheispecies85.457Too Low0.002134
Enterobacteriaceae incertae sedisno rank82.758Too Low0.006624
Erysipelothrix inopinataspecies54.221Too Low4.45E-05
Fabaceaefamily77.354Too Low0.008002
Fabalesorder77.354Too Low0.008002
fabidsclade77.354Too Low0.008002
genistoids sensu latoclade77.354Too Low0.008002
Granulicellagenus16.429Too High0.001841
Granulicella tundricolaspecies16.229Too High0.00148
Hallella bergensisspecies20.133Too High0.003987
Lactobacillus crispatusspecies26.543Too High0.001406
Lactococcusgenus161.5201Too High0.001877
Leptospiragenus89.561Too Low0.002559
Leptospira licerasiaespecies89.461Too Low0.002701
Leptospiraceaefamily89.561Too Low0.002559
Leptospiralesorder89.561Too Low0.002559
Lysinibacillusgenus51.532Too Low0.006618
Lysinibacillus parviboronicapiensspecies50.429Too Low0.002564
Macrococcusgenus118.989Too Low0.006111
Microbacteriaceaefamily99.572Too Low0.005912
Moorella groupnorank152.6188Too High0.004132
Oxalobactergenus130.999Too Low0.005356
Oxalobacter vibrioformisspecies94.965Too Low0.007793
Papilionoideaesubfamily77.354Too Low0.008002
Peptoniphilus lacrimalisspecies51.872Too High0.004884
Piscirickettsiaceaefamily51.529Too Low0.007262
Psychrobactergenus138.999Too Low0.001332
Psychrobacter glacialisspecies75.151Too Low0.00545
rosidsclade77.354Too Low0.008002
Rothiagenus77.354Too Low0.008002
Rothia mucilaginosaspecies64.140Too Low0.002631
Sporotomaculumgenus148.6108Too Low0.001472
Sporotomaculum syntrophicumspecies146.7107Too Low0.001751
Streptococcus massiliensisspecies53.634Too Low0.007353
Syntrophobacteraceaefamily118.383Too Low0.00291
Tetragenococcus halophilusspecies18.059Too High3.63E-22
Thiomicrospiragenus43.726Too Low0.007396
Tolumonasgenus80.755Too Low0.004169
Tolumonas auensisspecies79.954Too Low0.003748
Trabulsiellagenus59.137Too Low0.004074
Vagococcusgenus99.272Too Low0.00718
Varibaculum cambriensespecies17.330Too High0.002302

Bottom Line

My personal view is that this pattern is not unexpected. ME/CFS microbiome is typically after years of the dysbiosis microbiome evolving. With Long COVID, we have the microbiome still trying to stabilize.

  • Bif. Adolescentis

And all Lactobacillus and Lactococcus probiotics should be avoided.

The above information will be eventually integrated into Microbiome Prescription suggestions expert system. The purpose is to first identify the bacteria of concern.

The following bacteria were reported by 2 or 3 of the ME/CFS analysis and the same shift seen with Long COVID.

Anaerococcus murdochiispecies — sibling high in ME/CFS
Peptoniphilus lacrimalisspecies – HIGH EVERYWHERE
Varibaculumgenus – HIGH EVERYWHERE

Varibaculum, particularly Varibaculum cambriense, has been identified as a potential pathogen associated with various human infections, especially in skin and soft tissues26. This anaerobic, gram-positive bacterium was first described in 2003 and has since been isolated from several clinical cases2.

A new species, Varibaculum timonense, has been isolated from human stool samples, indicating that the genus Varibaculum may have a broader presence in the human microbiome than previously recognized3.

While Varibaculum species are not yet widely known pathogens, their isolation from various infection sites suggests they may play a more significant role in human health than currently understood. Further research is needed to fully elucidate the pathogenic potential and clinical importance of these bacteria.

A new set of Associations to Symptoms coming

The process is very simple, for a condition like Long COVID, we compute the expected number of samples reporting this bacteria (based on people without Long COVID) and compare it to the actual number seen. This can be used to compute a statistical value called Chi-Square (χ²), This is then used to compute the chance of it happening at random. This is possible because we have over 3600 samples from some labs and thus able to detect things better.

Actual example:

Not all symptoms have many bacteria associated

A few examples (using Biomesight data). All samples are P < 0.01 (1 in 1000)

  • Myalgia (pain)
    • Mobiluncus — too high
    • Peptoniphilus asaccharolyticus — too high
    • Campylobacter ureolyticus — too high
  • Headaches
    • Microbacterium — too high
    • Anaerococcus hydrogenalis — too high
    • Eubacterium limosum — too high
    • Peptoniphilus asaccharolyticus — too high
  • Recurrent flu-like symptoms
    • Sphingomonas — too high
    • Chromatium — too high
    • Chromatium weissei — too high
  • Excessive adrenaline
    • unclassified Bacteroidetes Order II — too low
    • Bifidobacterium adolescentis — too low. Implies that Bifidobacterium adolescentis probiotics may help
  • Difficulty reading
    • Bifidobacterium indicum — too low
  • Upset stomach
    • Streptococcus anginosus – too high
    • Viridiplantae (kingdom) – green plants! – too high (how this shows up in results, I will leave to Biomesight to explain)
  • Tingling feeling
    • Bifidobacterium indicum – too high
    • Prevotella bivia – too low
  • Need to nap during each day
    • Kushneria – too low
    • Prevotella bivia – too low
  • Difficulty falling asleep
    • Alkalithermobacter thermoalcaliphilus – too low
    • Paraprevotella xylaniphila – too high
  • Absent-mindedness
    • Corynebacterium aurimucosum — too low
    • Streptococcus gordonii — too low
    • Catenibacterium mitsuokai – too low
  • Mood swings
    • Glaciecola – too high
  • Acne
    • Mogibacterium vescum — too low
    • Listeria — too low
    • Listeria innocua — too low
    • Mogibacterium vescum — too low
  • Dry Mouth
    • Prevotella bivia — too low
    • Prevotella disiens — too low
    • Clostridium malenominatum — too low

The reasons that there may be few bacteria associated may originate in symptoms being self-declared and there is a wide variety of actual shifts.